当前位置: > 如图,在▱ABCD中,延长CD至点E,延长CB至点F,使点E、A、F共线,且∠EAD=∠BAF. (1)试说明△CEF是等腰三角形; (2)△CEF的哪两边之和恰好是▱ABCD的周长?并说明理由....
题目
如图,在▱ABCD中,延长CD至点E,延长CB至点F,使点E、A、F共线,且∠EAD=∠BAF.

(1)试说明△CEF是等腰三角形;
(2)△CEF的哪两边之和恰好是▱ABCD的周长?并说明理由.

提问时间:2020-10-30

答案
(1)∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,AD∥BC,AB∥CD,
∴∠EAD=∠F,∠FAB=∠E,
∵∠EAD=∠FAB,
∴∠F=∠E,
∴CF=CE,
∴△CEF是等腰三角形.
(2)△CEF的两边CF、CE之和恰好是▱ABCD的周长,
理由是:∵由(1)得∠EAD=∠F=∠FAB=∠E,
∴AB=BF,AD=DE,
∴平行四边形ABCD的周长为AB+BC+CD+DA=BF+BC+CD+DE=CF+CE,
即△CEF的两边CF、CE之和恰好是▱ABCD的周长.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.