题目
一种证明柯西收敛准则的错误方法,
已知:任意ε>0,存在N∈N*,使得任意m,n>N,有|am-an|0
存在N∈N*,使得任意m,n>N,有|am-an|=n>N
任意m>N,
有|am-a(N+1)|
已知:任意ε>0,存在N∈N*,使得任意m,n>N,有|am-an|0
存在N∈N*,使得任意m,n>N,有|am-an|=n>N
任意m>N,
有|am-a(N+1)|
提问时间:2020-10-30
答案
很不幸的是,你的过程都没有问题,就是最后,有|am-a(N+1)|0,存在N∈N*,使得任意n>N,有|an-c|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点