当前位置: > 求(aresinx/x)^(1/ln(2+x^2))的极限(x趋向0)...
题目
求(aresinx/x)^(1/ln(2+x^2))的极限(x趋向0)
如题,

提问时间:2020-10-30

答案
如果指数是1/ln(2+x^2)的话,则指数极限是1/ln2;底数极限是1,结果是1.
如果指数是1/ln(1+x^2)的话,则
极限=e^lim( (1/ln(1+x^2)) ·ln(aresinx/x) )
=e^lim( ln(aresinx/x) / ln(1+x^2) )
=e^lim( ln(1+ aresinx/x -1) / ln(1+x^2) )
=e^lim( ( aresinx/x -1) / (x^2) )
=e^lim( ( aresinx -x) / (x³) )
令u=aresinx ,则x=sinu.
当x趋向0时,ux趋向0
则原极限=e^lim((u-sinu)/(sin³u) )
=e^lim( (u-sinu)/(u³) )
=e^lim( (1-cosu)/(3u²) )
=e^lim( (1/2)u²)/(3u²) )
=e^lim(1/6)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.