题目
如图,△acd是等边三角形,△abc是等腰直角三角形,∠acb=90°bd交ac宇e,ab=2
求cos∠cbe的值 求ae
求cos∠cbe的值 求ae
提问时间:2020-10-30
答案
∠ACB=90°,AB=2,设AC=BC=X,则:AC^2+BC^2=AB^2,X^2+X^2=4,X=√2.
则BC=AC=√2;三角形ACD为等边三角形,故AC=AD=CD=√2.
作DF垂直BC的延长线于F.
∠BCD=∠BCA+∠ACD=150°,则∠DCF=30°,DF=CD/2=√2/2,CD=√(CD^2-DF^2)=√6/2.
BD=√(BF^2+DF^2)=√[(BC+CF)^2+DF^2]=√(√3+1)^2=√3+1.
cos∠CBE=BF/BD=(√2+√6/2)/(√3+1)=(√6+√2)/4;
CE/BC=DF/BF,即:CE/√2=(√2/2)/(√2+√6/2),CE=2√2-√6;
故AE=AC-CE=√6-√2.
则BC=AC=√2;三角形ACD为等边三角形,故AC=AD=CD=√2.
作DF垂直BC的延长线于F.
∠BCD=∠BCA+∠ACD=150°,则∠DCF=30°,DF=CD/2=√2/2,CD=√(CD^2-DF^2)=√6/2.
BD=√(BF^2+DF^2)=√[(BC+CF)^2+DF^2]=√(√3+1)^2=√3+1.
cos∠CBE=BF/BD=(√2+√6/2)/(√3+1)=(√6+√2)/4;
CE/BC=DF/BF,即:CE/√2=(√2/2)/(√2+√6/2),CE=2√2-√6;
故AE=AC-CE=√6-√2.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1在整流电路中,稳压二极管的正极是电源的正极相连?还是负极相连?我看到电路图是负极与电路中的正负相连
- 2明明买了一只文具盒和10本练习本,共用去15元,已知练习本的单价是文具盒的1/5,文具盒的单价是()元,练习本()
- 3数列找规律:2,12,36,80,___
- 4一直关于x的方程(n-1)x的平方+mx+1=0①有两个相等的实数根
- 5土壤污染已经对人类的健康造成威胁 缩句
- 6方程AX²+By²=C是否可以表示椭圆?若可以则ABC的条件是什么?
- 7已知等差数列{an}的前n次和为sn,且S2=10,S5=55,则过点P(n,an)和Q(n+2,an+2)(n∈-N*)的直线方向向量的坐标可以是_.
- 8求函数关系式以及函数图像
- 9为什么电视传播媒体对小学儿童的社会化有那么大影响呢?
- 10青藏铁路沿线经过哪些主要山脉河河流