当前位置: > 将33拆成若干个不同质数之和,如果要使这些质数的积最大,问这几个质数分别是多少?...
题目
将33拆成若干个不同质数之和,如果要使这些质数的积最大,问这几个质数分别是多少?

提问时间:2020-10-30

答案
小于33的质数由小到大排列:
2,3,5,7,11,13,17,19,23,29,31(共11个),
由于2+3+5+7+11<33,而2+3+5+7+11+13>37.因此最多拆成5个不同质数之和.但由于33是奇数,拆除的5个不同质数中不能有偶质数2,否则其余4个奇质数之和为偶数,这5个质数和为偶数,不可能等于奇数33,而3+5+7+11+13=39>33.因此最多拆成4个不同质数之和,为此,要使这些质数的积最大,必须拆出的质数尽量大,
因为,2+3+5+7+11=28,比33差:33-28=5;又因为在2+3+5+7+11中3+5=8,正好与相差的5组成8+5=13,
所以33分解为:2,7,11,13时所得质数乘积最大.
答:这几个质数分别是2、7、11、13.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.