当前位置: > 分析法证明不等式...
题目
分析法证明不等式
已知非零向量a,b,a⊥b,求证|a|+|b|/|a+b|

提问时间:2020-10-30

答案
【1】
∵a⊥b
∴ab=0
又由题设条件可知,
a+b≠0(向量)
∴|a+b|≠0.
具体的,即是|a+b|>0
【2】
显然,由|a+b|>0可知
原不等式等价于不等式:
|a|+|b|≤(√2)|a+b|
该不等式等价于不等式:
(|a|+|b|)²≤[(√2)|a+b|]².
整理即是:
a²+2|ab|+b²≤2(a²+2ab+b²)
【∵|a|²=a².|b|²=b².|a+b|²=(a+b)²=a²+2ab+b²
又ab=0,故接下来就有】】
a²+b²≤2a²+2b²
0≤a²+b²
∵a,b是非零向量,
∴|a|≠0,且|b|≠0.
∴a²+b²>0.
推上去,可知原不等式成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.