当前位置: > 非对称矩阵相似对角化过程中的相似变换P为什么一定是该矩阵不同特征值对应的特征向量所组成的矩阵?...
题目
非对称矩阵相似对角化过程中的相似变换P为什么一定是该矩阵不同特征值对应的特征向量所组成的矩阵?
如已知非对称三阶矩阵A可以相似对角化,即存在可逆矩阵P使得P^(-1)AP=diag(a,b,c).为什么这个相似对角化过程中的相似变换P就是3个特征值(可能有重根)对应特征向量按列向量组合在一起呢?

提问时间:2020-10-30

答案
令P=(p1,p2,p3)
则 AP = (Ap1,Ap2,Ap3) = Pdiag(a,b,c) = (ap1,bp2,cp3)
所以 Ap1=ap1
Ap2=bp2
Ap3=cp3
这样就可知特征值,特征向量,可逆矩阵P,对角矩阵diag(a,b,c) 之间的关系了
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.