题目
设f(x)是一次函数,f(1)=1,且f(2),f(3)+1,f(5)成等差数列,若an=f(n),n属于非零自然数
1.求证集合an是等差数列
2.在集合an没相邻两项之间插入2个数,构成一个新的等差数列{bn},求数列{bn}的钱n项和Bn
3.设cn=2^(3bn-1),n属于非零自然数,求数列{cn}的前n项和Cn
1.求证集合an是等差数列
2.在集合an没相邻两项之间插入2个数,构成一个新的等差数列{bn},求数列{bn}的钱n项和Bn
3.设cn=2^(3bn-1),n属于非零自然数,求数列{cn}的前n项和Cn
提问时间:2020-10-30
答案
1.设 f (x) = ax + b; f(1) = a+b = 1
由题意:f (2) + f(5) = 2 x (f (3) + 1)
故 (2a+b) + (5a+b) = 2 x (3a + b + 1),7a + 2b = 6a + 2b + 2,a = 2,b = -1
所以 f(x) = 2x - 1
对于任何一个 N (正整数),有 2f(N) = 4 N - 2 = (2(N-1)-1) + (2(N+1)-1) = f(N-1) + f(N+1)
所以an = f(N) 为等差数列
2.f(x) = 2x-1,f(x+1) = 2x + 1,
中间插入两个数字并保持等差,所以差值d为 2/3,
设bn = g(n) = 2/3 n + x,由 a(1) = b(1) = 1,有 x = 1/3
所以构造成 bn = g(n) = 2/3 n +1/3,
Bn = b1 + b2 + ...+ bn
= (b1 + bn)*n/2 = (1 + 2/3 n + 1/3) * n /2 = 1/3 n^2 + 2/3 n
3.3bn-1 = 3*(2/3n+1/3) = 2n+1
cn = 2^(2n+1)
Cn = c1 + c2 + ...+ cn
= (2^2 - 1) * (cn + ...+ c1) / (2^2 -1)
= c(n+1) - cn + cn - c(n-1) + ...+ c2 - c1)
= (c(n+1) - c1) / 3
= (2^ (2n+3) - 8) / 3
由题意:f (2) + f(5) = 2 x (f (3) + 1)
故 (2a+b) + (5a+b) = 2 x (3a + b + 1),7a + 2b = 6a + 2b + 2,a = 2,b = -1
所以 f(x) = 2x - 1
对于任何一个 N (正整数),有 2f(N) = 4 N - 2 = (2(N-1)-1) + (2(N+1)-1) = f(N-1) + f(N+1)
所以an = f(N) 为等差数列
2.f(x) = 2x-1,f(x+1) = 2x + 1,
中间插入两个数字并保持等差,所以差值d为 2/3,
设bn = g(n) = 2/3 n + x,由 a(1) = b(1) = 1,有 x = 1/3
所以构造成 bn = g(n) = 2/3 n +1/3,
Bn = b1 + b2 + ...+ bn
= (b1 + bn)*n/2 = (1 + 2/3 n + 1/3) * n /2 = 1/3 n^2 + 2/3 n
3.3bn-1 = 3*(2/3n+1/3) = 2n+1
cn = 2^(2n+1)
Cn = c1 + c2 + ...+ cn
= (2^2 - 1) * (cn + ...+ c1) / (2^2 -1)
= c(n+1) - cn + cn - c(n-1) + ...+ c2 - c1)
= (c(n+1) - c1) / 3
= (2^ (2n+3) - 8) / 3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1Is this your sister?
- 2《指南录后序》中“而境界危恶,层出错见,非人世所堪”怎么翻译?
- 3小学五年级上册数学三单元学科王试卷第六题(用方程解)
- 4为什么电子层数越多,电子之间排斥也就越大,使原子的半径增大而核电...
- 5i like swimming very much .____ i like basketball and table tennis.中间填什么连词
- 6整 藏 眨 这个三个字分别在新华字典的第几页?
- 7紫外分光光度计的使用方法?
- 8回声是我们日常生活中常见的一种现象.声波在传播过程中,碰到大的反射面(如建筑物的墙壁等),在界面将发生反射,人们把能够与原声区分开的反射声波叫做回声.人耳能辨别出回声与原声的时差须大约0.1s,大于0
- 9英语翻译
- 102011年6月24日是星期五,求2012年6月24日是星期几?