当前位置: > 抛物线y=(m-10)x^2-2mx-3m-1,请证明,当m取不同的值时,抛物线都会过两个定点,并求出这两个点...
题目
抛物线y=(m-10)x^2-2mx-3m-1,请证明,当m取不同的值时,抛物线都会过两个定点,并求出这两个点

提问时间:2020-10-30

答案
y=(m-10)x^2-2mx-3m-1=mx^2-10x^2-2mx-3m-1=m(x^2-2x-3)-10x^2-1=m(x+1)(x-3)-10x^2-1,
当x=-1或x=3时,无论m取什么实数值时,y=-11或-91,
即当m取不同的值时,抛物线都会过两个定点(-1,-11),(3,-91).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.