当前位置: > 偏导数的证明...
题目
偏导数的证明
r=(x^2+y^2+z^2)12
证明:r(xx)+r(yy)+r(zz)=2

提问时间:2020-10-30

答案
对x的一阶导数
r(x)=(1/2)*(x^2+y^2+z^2)^(-1/2)*2x
=x*(x^2+y^2+z^2)^(-1/2)
对y的一阶导数
r(y)=y*(x^2+y^2+z^2)^(-1/2)
对z的一阶导数
r(z)=z*(x^2+y^2+z^2)^(-1/2)
二阶偏导函数
r(xx)=(x^2+y^2+z^2)^(-1/2)-(1/2)x*(x^2+y^2+z^2)^(-3/2)*2x
=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2)
r(yy)=(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2)
r(zz)=(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
r(xx)+r(yy)+r(zz)=(x^2+y^2+z^2)^(-1/2)-x^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-y^2*(x^2+y^2+z^2)^(-3/2) +(x^2+y^2+z^2)^(-1/2)-z^2*(x^2+y^2+z^2)^(-3/2)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)(x^2+y^2+z^2)^(-1/2)*(x^2+y^2+z^2)^(-1)
=3(x^2+y^2+z^2)(-1/2)-(x^2+y^2+z^2)^(-1/2)
=2(x^2+y^2+z^2)^(-1/2)
=2/r
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.