题目
几何:如图,在梯形ABCD中,AD‖BC,AB⊥BC,AD=8cm,BC=16cm,AB=6cm.
26.如图,在梯形ABCD中,AD‖BC,AB⊥BC,AD=8cm,BC=16cm,AB=6cm.动点M,N分别从点B,C同时出发,沿BC,CD方向在BC,CD上运动,点M,N运动的速度分别为2cm/s,1cm/s
(2)点M在边BC上运动时,设点M运动的时间为t(s),是否在某一时刻t(s),使得ΔAMN的面积最小?(存在,说明)
图在:
26.如图,在梯形ABCD中,AD‖BC,AB⊥BC,AD=8cm,BC=16cm,AB=6cm.动点M,N分别从点B,C同时出发,沿BC,CD方向在BC,CD上运动,点M,N运动的速度分别为2cm/s,1cm/s
(2)点M在边BC上运动时,设点M运动的时间为t(s),是否在某一时刻t(s),使得ΔAMN的面积最小?(存在,说明)
图在:
提问时间:2020-10-30
答案
分别过D.N作边BC的垂线交BC于E.F点
由DE:DC=6:10
所以NF:NC=3:5
由题义知点M在BC上,点N必在DC上
设使得ΔAMN的面积最小的时刻为t
则BM=2t,CN=t(由实际意义可知t属于0到8的闭区间)
ΔAMN的面积=梯形的面积-ΔADN-ΔABM-ΔNMC
梯形的面积=72
ΔADN=AD*(6-NF)/2=8*(6-3/5t)/2
ΔABM=AB*BM/2=6*2t/2=6t
ΔNMC=MC*NF/2=(16-2t)*3/5t/2
所以ΔAMN的面积=72-[8*(6-3/5t)/2+6t+(16-2t)*3/5t/2]
t小于等于8且大于等于0
所以求ΔAMN的面积的最小值,即求[8*(6-3/5t)/2+6t+(16-2t)*3/5t/2]的最大值.
化简求二次函数的最大值为t=7时,面积为28.6
由DE:DC=6:10
所以NF:NC=3:5
由题义知点M在BC上,点N必在DC上
设使得ΔAMN的面积最小的时刻为t
则BM=2t,CN=t(由实际意义可知t属于0到8的闭区间)
ΔAMN的面积=梯形的面积-ΔADN-ΔABM-ΔNMC
梯形的面积=72
ΔADN=AD*(6-NF)/2=8*(6-3/5t)/2
ΔABM=AB*BM/2=6*2t/2=6t
ΔNMC=MC*NF/2=(16-2t)*3/5t/2
所以ΔAMN的面积=72-[8*(6-3/5t)/2+6t+(16-2t)*3/5t/2]
t小于等于8且大于等于0
所以求ΔAMN的面积的最小值,即求[8*(6-3/5t)/2+6t+(16-2t)*3/5t/2]的最大值.
化简求二次函数的最大值为t=7时,面积为28.6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1已知长方体的长为2a+3b,宽为a+2b,高为2a-3b,则长方体的表面积是
- 2精彩极了和糟糕透了·····它们像两股风不断地向我吹来.仿写句子.快点、明天就要交!
- 3有质量为1、2、4、8 kg 4个砝码,每次取出3个,可以放天平两边(就是可以相减),问能称出多少种质量?答:11种.怎么得出的?
- 4先按项的次数排列,再按降幂顺序排列,写出一个关于x,y的三次十项式,其中各项系数及常数均为1.
- 5方程组:3X-7Y=1,5X-4Y=17怎么解
- 6画条形统计图时,直条的( )必须一样,而且要根据数据大小的( )来确定单位长度表示长度
- 7()÷20=4:5=()分之12=()%
- 8用一架天平称3次,最多能从多少个乒乓球中找出仅有的一个因超重而不合格的乒乓球?
- 9”机遇永远垂青有所准备的人“这句话是谁说的?
- 10解有关平方根的方程