当前位置: > 已知函数f(x)=x2+x-a. (1)若a=2,求使f(x)>0时x的取值范围; (2)若存在x0∈[-1,2]使f(x0)>0成立,求实数a的取值范围....
题目
已知函数f(x)=x2+x-a.
(1)若a=2,求使f(x)>0时x的取值范围;
(2)若存在x0∈[-1,2]使f(x0)>0成立,求实数a的取值范围.

提问时间:2020-10-30

答案
(1)当a=2时,f(x)=x2+x-2,由f(x)=x2+x-2>0,解得x<-2或x>1.
所以x的取值范围为x<-2或x>1.
(2)使f(x0)>0在x0∈[-1,2]成立,则由x2+x-a>0,得a<x2+x成立即可.即a<(x2+x)max,x∈[-1,2].
x2+x=(x+
1
2
)2
1
4
,当x=2时(x2+x)max=6.所以a<6.
即a的取值范围为a<6.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.