当前位置: > 关于X的方程X^2+ZX+1+2i=0有实数根,求复数Z的模的最小值...
题目
关于X的方程X^2+ZX+1+2i=0有实数根,求复数Z的模的最小值

提问时间:2020-10-30

答案
设z=a+bi,a,b都是实数,那么原来的方程就等价于下面两个方程
X^2+aX+1=0,bX+2=0;
于是有
a=-x-1/x,b=-2/x,
而a^2+b^2=x^2+2+5/x^2>=2+2*5^(1/2)
上述等号在x=5^(1/4)时成立,
此时a^2+b^2为最小,
因此|z|最小为(2+2*5^(1/2))^(1/2).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.