题目
已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是π/2.(1
若|f(x)-m|≦2在x∈[-π/8,π/8]上恒成立,求m范围
若|f(x)-m|≦2在x∈[-π/8,π/8]上恒成立,求m范围
提问时间:2020-10-30
答案
已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是π/2;
若|f(x)-m|≦2在x∈[-π/8,π/8]上恒成立,求m范围
f(x)=2cos(2ωx)+sin(2ωx)+1=cotφcos(2ωx)+sin(2ωx)+1
=(1/sinφ)[cos(2ωx)cosφ+sin(2ωx)sinφ]+1
=(1/sinφ)cos(2ωx-φ)+1=(√5)sin(2ωx-arccot2)+1
其中,cotφ=2,sinφ=1/√5,cosφ=2/√5.
T=2π/2ω=π/ω=π/2,故ω=2;于是f(x)=(√5)sin(4x-arccot2)+1
在[-π/8,π/8]上,f(-π/8)=(√5)sin(-π/2-arccot2)+1=-(√5)cos(arccot2)+1=-2+1=-1
f(π/8)=(√5)sin(π/2-arccot2)+1=(√5)cos(arccot2)+1=2+1=3
即在区间[-π/8,π/8]上-1≦f(x)≦3;故要使|f(x)-m|≦2在区间[-π/8,π/8]上恒成立,应使
︱3-m︱≦2恒成立,故-1≦m≦5.
若|f(x)-m|≦2在x∈[-π/8,π/8]上恒成立,求m范围
f(x)=2cos(2ωx)+sin(2ωx)+1=cotφcos(2ωx)+sin(2ωx)+1
=(1/sinφ)[cos(2ωx)cosφ+sin(2ωx)sinφ]+1
=(1/sinφ)cos(2ωx-φ)+1=(√5)sin(2ωx-arccot2)+1
其中,cotφ=2,sinφ=1/√5,cosφ=2/√5.
T=2π/2ω=π/ω=π/2,故ω=2;于是f(x)=(√5)sin(4x-arccot2)+1
在[-π/8,π/8]上,f(-π/8)=(√5)sin(-π/2-arccot2)+1=-(√5)cos(arccot2)+1=-2+1=-1
f(π/8)=(√5)sin(π/2-arccot2)+1=(√5)cos(arccot2)+1=2+1=3
即在区间[-π/8,π/8]上-1≦f(x)≦3;故要使|f(x)-m|≦2在区间[-π/8,π/8]上恒成立,应使
︱3-m︱≦2恒成立,故-1≦m≦5.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1英语翻译 我希望我们的梦想成真
- 22310有多少个约数2310=2*3*5*7*11 (1+1)(1+1)(1+1)(1+1)(1+1)=32 质因数的指数加一,相乘.
- 3如图,电车通过A站经过B站到C站,然后返回.去时在B站停车,而返回时不停.去时的车速为每小时48千米. (1)A站到B站相距_千米,B站到C站相距_千米. (2)返回时车速是每小时_千米.
- 4y=5+ ln x ,则dy=多少
- 5分析化学实验设计
- 6言必行
- 7It may be a ______ from collecting stamps to making model planes.
- 8为什么说“节约时间,就等于延长一个人的生命?”
- 9㏒5(1/3)·㏒3(6)·㏒6(x)=2,则x=?
- 10一件工程,甲、乙、丙三队合做要6天完成,甲乙两队合作要9天完成.丙队独做要多少天完成?
热门考点