当前位置: > 过椭圆x^2/4+y^2/3=1的右焦点F作直线l交椭圆于A.B两点.求三角形OAB面积的最大值.求简便点的方法...
题目
过椭圆x^2/4+y^2/3=1的右焦点F作直线l交椭圆于A.B两点.求三角形OAB面积的最大值.求简便点的方法

提问时间:2020-10-30

答案
椭圆的焦点为(1,0),过焦点的直线设为y=k(x-1).与椭圆方程联立消去x得到
[(3/k²)+4]y²+[6y/k]-9=0.
设A(X1,Y1)B(X2,Y2)
S△OAB=1/2*c*|y1-y2|=(1/2)√【(y1+y2)²-4y1y2】=(18+18k²)/(9+k²)
=18-[144/(k²+9)]
18-[144/(k²+9)]函数在(-∞,0】上为减,在【0,+∞)为增.
故当k趋向于+∞时,s有最大值.即与x轴垂直,此时面积为18.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.