题目
等轴双曲线的中心在原点,焦点在x轴上,它截y=(1/2)x得到的弦长|AB|=2根号15,求此双曲线方程
提问时间:2020-10-30
答案
设等轴双曲线是x^2-y^2=k.(k>0)
y=x/2代入得:x^2-x^2/4=k
x^2=4k/3
x1=2根号(3k)/3,x2=-2根号(3k)/3
AB=根号[1+(1/2)^2]*|x1-x2|=2根号15
即:根号(5/4)*4根号(3K)/3=2根号15
根号(15K)*2=2根号15
得K=1
即方程是x^2-y^2=1
y=x/2代入得:x^2-x^2/4=k
x^2=4k/3
x1=2根号(3k)/3,x2=-2根号(3k)/3
AB=根号[1+(1/2)^2]*|x1-x2|=2根号15
即:根号(5/4)*4根号(3K)/3=2根号15
根号(15K)*2=2根号15
得K=1
即方程是x^2-y^2=1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点