当前位置: > 函数y=log(3)(x^2-2x)的单调递减区间是?...
题目
函数y=log(3)(x^2-2x)的单调递减区间是?

提问时间:2020-10-30

答案
这是一个复合函数问题
y=log(3)(x^2-2x)可以看成是由两个函数复合而成:
y=log(3)t与t=x^2-2x
但是x^2-2x>0,才能保证y=log(3)(x^2-2x)有意义
即x属于(负无穷,0)U(2,正无穷)……(1)
由于y=log(3)t本身就是一个增函数,要使函数y=log(3)(x^2-2x)的单调递减,
即需求出t=x^2-2x的单调递减区间 ,为(负无穷,1)……(2)
综合(1)(2),
所以答案为:(负无穷,0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.