当前位置: > b>a>0 证明 lnb-lna>2(b-a)(a+b)...
题目
b>a>0 证明 lnb-lna>2(b-a)\(a+b)

提问时间:2020-10-30

答案
设b=a+c,c>0
则lnb-lna=ln(b/a)=ln(1+c/a)
2(b-a)/(a+b)=2c/(2a+c)
令t=c/a
则lnb-lna=ln(1+t),2(b-a)/(a+b)=2t/(2+t)
令f(t)=ln(1+t)- 2t/(2+t)
f'(t)=1/(1+t) -4t/(t+2)^2=t^2/(t+1)(t+2)^2>0
所以f(t)是增函数
而f(0)=0所以对所有的t>0都有f(t)>0
所以lnb-lna>2(b-a)\(a+b)
题目有点类似
但是这题我用中值定理没做出来.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.