当前位置: > 求lim(x→0)ln[1+e^x(sinx)^2]/√(1+x^2)-1...
题目
求lim(x→0)ln[1+e^x(sinx)^2]/√(1+x^2)-1

提问时间:2020-10-30

答案
在x趋于0的时候,
e^x(sinx)^2也趋于0,
那么
ln[1+e^x(sinx)^2]就等价于e^x(sinx)^2,
而此时e^x趋于1,所以ln[1+e^x(sinx)^2]就等价于(sinx)^2
而分母√(1+x^2)-1等价于0.5x^2
所以
原极限
=lim(x→0) (sinx)^2 / (0.5x^2)
=lim(x→0) 2(sinx)^2 / x^2 显然由重要极限知道lim(x→0) sinx / x=1
= 2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.