当前位置: > 设函数y=y(x)由方程sin(x²y)+ln(2x-y)=0所确定,则曲线y=y(x)在点(0.-1)处的切线方程为...
题目
设函数y=y(x)由方程sin(x²y)+ln(2x-y)=0所确定,则曲线y=y(x)在点(0.-1)处的切线方程为

提问时间:2020-10-30

答案
(0,-1)在曲线上,是切点
对x求导
cos(x²y)*(2xy+x²*y')+1/(2x-y)*(2-y')=0
吧(0,-1)代入
2-y'=0
所以切线斜率k=y'=2
所以是2x-y-1=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.