题目
求这样的质数,当它加上10和14时,仍为质数.
提问时间:2020-10-30
答案
因为2+10=12,2+14=16,所以质数2不适合;
因为3+10=13,3+14=17,所以质数3适合;
因为5+10=15,5+14=19,所以质数5不合适;
因为7+10=17,7+14=21,所以质数7不适合;
因为11+10=21,11+14=25,所以质数11不适合;
…
把正整数按模3同余分类.即:3k-1,3k+1(k为正整数).
因为(3k-1)+10=3k+9=3(k+3)是合数,(3k+1)+14=3k+15=3(k+5)是合数,
所以3k-1和3k+1这两类整数中的质数加上10和14后不能都是质数,
因此,在3k-1和3k+1两类整数中的质数加上10和14后当然不能都是质数.
对于3k这类整数,只有在k=1时,3k才是质数,其余均为合数.
所以所求的质数只有3.
故答案为:3.
因为3+10=13,3+14=17,所以质数3适合;
因为5+10=15,5+14=19,所以质数5不合适;
因为7+10=17,7+14=21,所以质数7不适合;
因为11+10=21,11+14=25,所以质数11不适合;
…
把正整数按模3同余分类.即:3k-1,3k+1(k为正整数).
因为(3k-1)+10=3k+9=3(k+3)是合数,(3k+1)+14=3k+15=3(k+5)是合数,
所以3k-1和3k+1这两类整数中的质数加上10和14后不能都是质数,
因此,在3k-1和3k+1两类整数中的质数加上10和14后当然不能都是质数.
对于3k这类整数,只有在k=1时,3k才是质数,其余均为合数.
所以所求的质数只有3.
故答案为:3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1几道数学题,
- 2Once upon a time a little girl tried to make a living
- 3请帮忙解区分will be doing 与 will do,尽量详尽一点,
- 4筷子放到水里为什么变成弯的了
- 5can you see the tape player yes ,it is on the (),()some books.
- 6几种常见燃料
- 7向量与矩阵的关系是什么?
- 8高中化学必修一的一道关于物质的量的计算题
- 9在直角坐标系内,坐标轴上的点构成的集合可表示为( ) A.{(x,y)|x=0,y≠0或x≠0,y=0} B.{(x,y)|x=0且y=0} C.{(x,y)|xy=0} D.{(x,y)|x,y不
- 10天燃气的锅炉1天能用多少立方气?有没有公式啊?
热门考点