当前位置: > 已知sin^3A+cos^3A=1,求sinA+cosA的值和sin^4+cos^4的值....
题目
已知sin^3A+cos^3A=1,求sinA+cosA的值和sin^4+cos^4的值.

提问时间:2020-10-30

答案
sin^3A+cos^3A=(sinA+cosA)*(sin^2A+cos^2A-sinAcosA)
=(sinA+cosA)*(1-sinAcosA)=1,
两边平方得:(1+2sinAcosA)*(1-sinAcosA)^2=1,
假设m=sinAcosA,则(1+2m)*(1-m)^2=1,
2m^3-3m^2=0,m=0或m=3/2(不合题意,舍去)
所以sinAcosA=0,
不妨假设:sinA=0,cosA=1或-1,sinA+cosA=1或-1,
sin^4+cos^4=1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.