题目
已知点A在圆X^2+(Y-4)^2=1上运动,点B在椭圆X^2/4+Y^2=1上移动,求AB的最大值!
提问时间:2020-10-30
答案
要求AB的最大值,只要求出圆心和椭圆上的点之间的距离的最大值即可
圆心坐标为(0,4)
设椭圆上的点B的坐标为(2cost,sint)则圆心和B之间的距离的二次方为
4cost^2+(4-sint)^2=-3sint^2-8sint+20=-3(sint+4/3)^2+76/3
显然,当sint=-1时,函数取到最大值,为25,
故圆心和B之间的距离的最大值为5,
从而AB的最大值=5+1=6(1为圆的半径)
圆心坐标为(0,4)
设椭圆上的点B的坐标为(2cost,sint)则圆心和B之间的距离的二次方为
4cost^2+(4-sint)^2=-3sint^2-8sint+20=-3(sint+4/3)^2+76/3
显然,当sint=-1时,函数取到最大值,为25,
故圆心和B之间的距离的最大值为5,
从而AB的最大值=5+1=6(1为圆的半径)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点