当前位置: > 用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0....
题目
用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.
快啊///

提问时间:2020-10-30

答案
假设:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac<0,而方程的解为x=[-b±根号(b^2-4ac)]/2a,因为b^2-4ac<0,所以x无解,有两个不相等的虚数根,但这与方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根相矛盾,所以假设错误,所以若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.