当前位置: > A,B为n阶方阵,当E+AB可逆时,能否证明E+BA也可逆?...
题目
A,B为n阶方阵,当E+AB可逆时,能否证明E+BA也可逆?

提问时间:2020-10-30

答案
因为A,B为n阶方阵,当E+AB可逆,故(E+AB)^-1存在.因此(E+BA)(E-B[(E+AB)^-1]A)=E+BA-(E+BA)B[(E+AB)^-1]A=E+BA-(BE+BAB)[(E+AB)^-1]A=E+BA-B(E+AB)[(E+AB)^-1]A=E+BA-BA=E同理(E-B[(E+AB)^-1]A)(E+BA)=E所以E+BA也可逆...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.