题目
已知在三棱锥S-ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.
提问时间:2020-10-29
答案
证明:∵SA⊥面ABC,
∴BC⊥SA;
∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,
∴BC⊥面SAC;
又AD⊂面SAC,∴BC⊥AD,
又∵SC⊥AD,且BC、SC是面SBC内两相交线,
∴AD⊥面SBC.
∴BC⊥SA;
∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,
∴BC⊥面SAC;
又AD⊂面SAC,∴BC⊥AD,
又∵SC⊥AD,且BC、SC是面SBC内两相交线,
∴AD⊥面SBC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 11.某工程甲队单独做需48天,乙队单独做需36天.甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完.求乙队在中间单独工作的天数?
- 2除了用溢水法测量硬币的密度,还有什么方法可以测量.
- 3We want to know how we can study well.(改为同义句)
- 4一个圆的周长是同圆直径的_倍.
- 5已知两个互质的数的最小公倍数是105,这两个互质的数是多少?
- 6The problem is difficult ________.3Q
- 7土壤的自然倾斜面和安息角
- 8试证明:不论m为何值,关于x的方程2x²-﹙4m-1﹚x-m²=0总有两个不相等的实数根.
- 9三个宝贝的贝是什么字?
- 10求英语作文?necessary to attend training classes?
热门考点