题目
设n阶矩阵A满足A*A=A,E为n阶单位阵,证明:R(A)+R(A-E)=n
提问时间:2020-10-29
答案
由A²=A有,A(E-A)=0
得到 R(E-A)<=n-R(A)
所以有R(A)+R(A-E)=R(A)+R(E-A)<=n
又R(A)+R(E-A)>=R(A+(E-A))=R(E)=n
所以有R(A)+R(A-E)=n
得到 R(E-A)<=n-R(A)
所以有R(A)+R(A-E)=R(A)+R(E-A)<=n
又R(A)+R(E-A)>=R(A+(E-A))=R(E)=n
所以有R(A)+R(A-E)=n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点