当前位置: > 已知函数f(x)=1/4x^4+x^3-9/2x^2++cx有三个极值点...
题目
已知函数f(x)=1/4x^4+x^3-9/2x^2++cx有三个极值点
已知函数f(x)=1/4x^4+x^3-9/2X^2+cx有三个极值点
1.证明:-270,f'(1)

提问时间:2020-10-29

答案
1.f'(x)=x^3+3x^2-9x+c
令f'(x)=0,则x^3+3x^2-9x+c=0 (1)
即(1)式应有三个不同实数根.
对f(x)进行二次求导,即f''(x)=3x^2+6x-9 (2)
令(2)式=0,即 3x^2+6x-9 =0 解得x=1或-3
因为(1)式应有三个不同实数根.
则f'(1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.