题目
求函数导数 y=(cosx)^sinx-2x^x
提问时间:2020-10-28
答案
求函数导数 y=(cosx)^sinx-2x^x
设u=(cosx)^(sinx),于是有lnu=(sinx)[ln(cosx)]
故u′/u=(cosx)[ln(sinx)]+(sinx)[-(sinx)/(cosx)]=(cosx)[ln(sinx)]-[(sin²x)/cosx]
即u′=[(cosx)^(sinx)]′=u{(cosx)[ln(sinx)]-[(sin²x)/cosx]}
=[(cosx)^(sinx)]{(cosx)[ln(sinx)]-[(sin²x)/cosx]}
再设v=2x^x, 故lnv=ln2+xlnx,∴v′/v=lnx+1,即v′=v(lnx+1)=(2x^x)(lnx+1)
于是y′=[(cosx)^(sinx)]′-(2x^x)′
=[(cosx)^(sinx)]{(cosx)[ln(sinx)]-[(sin²x)/cosx]}-(2x^x)(lnx+1)
设u=(cosx)^(sinx),于是有lnu=(sinx)[ln(cosx)]
故u′/u=(cosx)[ln(sinx)]+(sinx)[-(sinx)/(cosx)]=(cosx)[ln(sinx)]-[(sin²x)/cosx]
即u′=[(cosx)^(sinx)]′=u{(cosx)[ln(sinx)]-[(sin²x)/cosx]}
=[(cosx)^(sinx)]{(cosx)[ln(sinx)]-[(sin²x)/cosx]}
再设v=2x^x, 故lnv=ln2+xlnx,∴v′/v=lnx+1,即v′=v(lnx+1)=(2x^x)(lnx+1)
于是y′=[(cosx)^(sinx)]′-(2x^x)′
=[(cosx)^(sinx)]{(cosx)[ln(sinx)]-[(sin²x)/cosx]}-(2x^x)(lnx+1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点