题目
高数微分证明题.
若函数f(x)在区间【0,1】上连续,在(0,1)内可导且f(0)=f(1)=0,f(1/2)=1.证明:(1)存在a∈(1/2,1),使f(a)=a.(2)对于任意的c∈R,存在b∈(0,a),使
fˊ(b)-c【f(b)-b】=1.
希望会做的人帮忙一下,感激不尽!
第一问我会,关键是要第二问的答案。
若函数f(x)在区间【0,1】上连续,在(0,1)内可导且f(0)=f(1)=0,f(1/2)=1.证明:(1)存在a∈(1/2,1),使f(a)=a.(2)对于任意的c∈R,存在b∈(0,a),使
fˊ(b)-c【f(b)-b】=1.
希望会做的人帮忙一下,感激不尽!
第一问我会,关键是要第二问的答案。
提问时间:2020-10-28
答案
第二问,g(x)=e^(-cx)[f(x)-x]然后用洛尔定理,g(0)=g(a)=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点