当前位置: > 在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/2^n(1)设bn=an/n求数列{bn}的通项公式(2)求数列{an}的前n项和...
题目
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)/2^n(1)设bn=an/n求数列{bn}的通项公式(2)求数列{an}的前n项和

提问时间:2020-10-27

答案
(1) ∵an+1=(1+1/n)an+(n+1)/2^n=(n+1)/n*an+(n+1)/2^n
∴an+1/(n+1)=an/n+1/2^n
∵bn=an/n,∴bn+1=bn+1/2^n
bn=bn-1+1/2^(n-1)
bn-1=bn-2+1/2^(n-2)
.
b2=b1+1/2^1
b1=a1/1=1
将上述n个式子加起来,得
bn=1+1/2+1/2^2+...+1/2^(n-1)
=1+1/2(1-(1/2)^(n-1))/(1-1/2)
=1+1-1/2^(n-1)
=2-1/2^(n-1)
(2) ∵bn=an/n,∴an=n*bn
∴Sn=1*b1+2*b2+...+n*bn
=1*(2-1)+2*(2-1/2)+3*(2-1/4)+...+n*(2-1/2^(n-1))
=2(1+2+3+...+n)-(1+2/2+3/4+...+n/2^(n-1))
=2Pn-Qn
设Pn=(1+2+3+...+n)=n(n+1)/2 Qn=(1+2/2+3/2^2+4/2^3+...+n/2^(n-1))
对Qn,有 Qn/2=(1/2+2/2^2+3/2^3+...+(n-1)/2^(n-1)+n/2^n)
Qn-Qn/2=Qn/2=1+[1/2+1/2^2+1/2^3+...+1/2^(n-1)]+n/2^n
=1+1/2(1-(1/2)^(n-1))/(1-1/2)+n/2^n
=1+1-(1/2)^(n-1)+n/2^n
=2-1/2^(n-1)+n/2^n
=2+(n+2)/2^n
∴Qn=4+2(n+2)/2^n
∴Sn=2Pn-Qn
=2*n(n+1)/2-4-2(n+2)/2^n
=n(n+1)-4-2(n+2)/2^n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.