当前位置: > O为三角形ABC所在平面内一点,向量OA^2 +向量BC^2=向量OB^2+向量CA^2=向量OC^2+向量AB^2,则O为什么心...
题目
O为三角形ABC所在平面内一点,向量OA^2 +向量BC^2=向量OB^2+向量CA^2=向量OC^2+向量AB^2,则O为什么心

提问时间:2020-10-27

答案
外接圆圆心 bc=oc-ob 所以oa平方加bc平方=oa平方+oc平方+ob平方-2oc*ob同理另外两个平方和也可化为只有oa ob oc的形式然后化简可得oc*ob=oc*oa=ob*oa 又因为oa ob oc不为零向量 所以oa ob oc必须长度相等,夹角相等 ...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.