题目
如图,在△ABC中,AB=AC,点E、F分别在AB和AC上,CE与BF相交于点D,若AE=CF,D为BF的中点,AE:AF的值为 ___ .
提问时间:2020-10-27
答案
过F作FH∥AB交CE于H,
∵FH∥AB,
∴∠HFD=∠EBD,
∵D为BF的中点,
∴BD=DF,
在△BED和△FHD中
,
∴△BED≌△FHD(AAS),
∴FH=BE,
∵FH∥AB,
∴△CFH∽△CAE,
∴HF:AE=CF:AC,
∵AC=AB,CF=AE,
∴AF=BE=HF.
设AC=AB=1,AE=x,则
=
即为
=
,
解得x=
-
,AF=
-
,
∴AE:AF=
.
∵FH∥AB,
∴∠HFD=∠EBD,
∵D为BF的中点,
∴BD=DF,
在△BED和△FHD中
|
∴△BED≌△FHD(AAS),
∴FH=BE,
∵FH∥AB,
∴△CFH∽△CAE,
∴HF:AE=CF:AC,
∵AC=AB,CF=AE,
∴AF=BE=HF.
设AC=AB=1,AE=x,则
HF |
AE |
CF |
AC |
1-x |
x |
x |
1 |
解得x=
| ||
2 |
1 |
2 |
3 |
2 |
| ||
2 |
∴AE:AF=
| ||
2 |
过F作FH∥AB交CE于H,首先证明△BED≌△FHD(SAS),得FH=BE;再证明△CFH∽△CAE,得到HF:AE=CF:AC,由已知可得CF=AE,AF=BE=HF,设AC=BA=1,AE=x,代入相似比中,即可解得x,即可得解AE:AF.
相似三角形的判定与性质.
本题主要考查三角形全等的判定和性质、三角形相似的判定和性质及二元一次方程的解法,正确作出辅助线是解题的关键.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点