当前位置: > (1)一个动点P在圆x2+y2=4上移动时,求点P与定点A(4,3)连线的中点M的轨迹方程. (2)自定点A(4,3)引圆x2+y2=4的割线ABC,求弦BC中点N的轨迹方程. (3)在平面直角坐标系...
题目
(1)一个动点P在圆x2+y2=4上移动时,求点P与定点A(4,3)连线的中点M的轨迹方程.
(2)自定点A(4,3)引圆x2+y2=4的割线ABC,求弦BC中点N的轨迹方程.
(3)在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.
①求圆C的方程;
②若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.

提问时间:2020-10-27

答案
(1)设中点M坐标为(x,y),由中点坐标公式得动点P的坐标为(2x-4,2y-3),
将P点坐标代入圆得到的关于x、y的方程,就是中点M的轨迹方程(因为点P在圆上).
即(2x-4)2+(2y-3)2=4;
(2)设中点N坐标为(x,y),圆心为O,则ON⊥AC,且圆心坐标为(0,0),于是
kAC
y−3
x−4
kON
y
x

因为ON⊥AC,所以kAC•kON=-1,即
y−3
x−4
y
x
=−1
,整理得
(x-2)2+(y-
3
2
2=
25
4

(3)①根据题意,可设圆心为(3,b).
由y=x2-6x+1,令x=0,则y=1;令y=0,则x=3±2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.