当前位置: > 设p为大于5的质数,证明:p的4次方≡1(mod24)....
题目
设p为大于5的质数,证明:p的4次方≡1(mod24).

提问时间:2020-10-27

答案
p^4-1=(p^2+1)(p+1)(p-1),因为p是大于5的质数,所以p+1,p-1是两个连续偶数,所以其中必有一个是4的倍数,另一个是2的倍数.所以8|(p+1)(p-1).
另一方面,p+1,p,p-1是三个连续正整数,所以模3的余数不同,所以若p-1、p+1均不是三的倍数,那么p就是3的倍数,但是p是大于5的质数,不会含有3这个因子,矛盾,因此3|(p+1)(p-1),又(3,8)=1,所以24|(p+1)(p-1),所以24|(p+1)(p-1)(p^2+1),即24|p^4-1.
因此p^4≡1(mod24)得证.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.