当前位置: > 设n阶矩阵A满足A^2=A且A≠E,证明|A|=0...
题目
设n阶矩阵A满足A^2=A且A≠E,证明|A|=0

提问时间:2020-10-27

答案
设j是的一特征值,则有X,使得AX=jX.
而又有
A^2×X=A(AX)=A(jX)=j(AX)=j^2×X 因为A^2=A,故有:j^2×X=j×X即 j^2=j
求得 j=0 j=1
由A^2=A 有A^2-A-2E=-2E
因为E^2=E A×E=A
故上式化成
(A+E)×(A-2E)=-2E
从而E+A可逆
所以|A|=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.