题目
今年春季,我国云南、贵州等西南地区遇到多年不遇旱灾,“一方有难,八方支援”,为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机分别为4台、3台、2台,每台抽水机每小时可抽水灌溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作一小时,灌溉农田32亩.
(1)设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台.
①用含x、y的式子表示丙种柴油发电机的数量;
②求出y与x的函数关系式;
(2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W最少?
(1)设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台.
①用含x、y的式子表示丙种柴油发电机的数量;
②求出y与x的函数关系式;
(2)已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,应如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用W最少?
提问时间:2020-10-27
答案
(1)①丙种柴油发电机的数量为10-x-y
②∵4x+3y+2(10-x-y)=32
∴4x+3y+20-2x-2y=32,
∴2x+y=12,
∴y=12-2x;
(2)丙种柴油发电机为10-x-y台,
∵y=12-2x,
∴10-x-y=(x-2)台,
W=130x+120(12-2x)+100(x-2)
=-10x+1240,
依题意解不等式组
得:3≤x≤5.5,
∵x为正整数,
∴x=3,4,5,
∵W随x的增大而减少,
∴当x=5时,W最少为-10×5+1240=1190(元).
故甲乙丙三种发电机的数量应分别为:5台、2台、3台,最少总费用为1190元.
②∵4x+3y+2(10-x-y)=32
∴4x+3y+20-2x-2y=32,
∴2x+y=12,
∴y=12-2x;
(2)丙种柴油发电机为10-x-y台,
∵y=12-2x,
∴10-x-y=(x-2)台,
W=130x+120(12-2x)+100(x-2)
=-10x+1240,
依题意解不等式组
|
∵x为正整数,
∴x=3,4,5,
∵W随x的增大而减少,
∴当x=5时,W最少为-10×5+1240=1190(元).
故甲乙丙三种发电机的数量应分别为:5台、2台、3台,最少总费用为1190元.
(1)①甲、乙、丙三种不同功率柴油发电机共10台,甲种柴油发电机数量为x台,乙种柴油发电机数量为y台,则丙种柴油发电机的数量为10-x-y;
②灌溉农田亩数=甲种抽水机台数×x+乙种抽水机台数×y+丙种抽水机台数×(10-x-y)=32.
(2)甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,
则发电机总费用w=130x+120(12-2x)+100(x-2).再由每种型号的发电机都不小于是1,求x的取值范围.再求最少总费用.
②灌溉农田亩数=甲种抽水机台数×x+乙种抽水机台数×y+丙种抽水机台数×(10-x-y)=32.
(2)甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元,
则发电机总费用w=130x+120(12-2x)+100(x-2).再由每种型号的发电机都不小于是1,求x的取值范围.再求最少总费用.
一次函数的应用;一元一次不等式的应用.
本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1甲乙二人都以不变的速度在环形路上跑步,如果同时同地出发,相向而行,每隔2分钟相遇一次;如果同相而行,每隔6分钟相遇一次.已知甲比乙跑得快,甲乙每分钟各跑多少圈?
- 2能把徐佳莹的中的闽南语部分翻译成汉语拼音吗?
- 3英语翻译
- 46/5×A=B÷5/4=c÷7/6,且A、B、c都不为零,这三个数按从小到大的顺序排列是_.
- 5怎么算一平方铜芯线等于多少安
- 6环形山的大小与什么因素有关的实验是模拟试验还是对比试验还是既是模拟实验又是对比试验?
- 7爱开头的成语
- 8He has been in China for three days ago同义句是什么 急呀,我给20财富
- 9在实验室里用锌和硫酸制取氧气.现在质量分数为20%的稀硫酸980g,与足量的锌完全反应后,
- 100.4算正整数还是负整数还是整数?4分之3算正整数还是负整数还是整数?
热门考点