当前位置: > 已知函数f(x)=x/2x+1,x>0,数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=1/2,bn+1=1/1-2f(Sn),其中...
题目
已知函数f(x)=x/2x+1,x>0,数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=1/2,bn+1=1/1-2f(Sn),其中
已知函数f(x)=x/2x+1,x>0,数列{an}满足a1=1,an+1=f(an);数列{bn}满足b1=1/2,bn+1=1/1-2f(Sn),其中Sn为数列{bn}前几项和,n=1,2,3...
(1)求数列{an}和{bn}的通项公式。
(2)设Tn=1/a1b1+1/a2b2+...+1/anbn,证明T

提问时间:2020-10-27

答案
an+1=f(an),则有a(n+1)=an/(2an+1),两边取倒数,1/a(n+1)=(2an+1)/an=2+1/an则有1/a(n+1)-1/an=2令cn=1/an则cn-c(n+1)=2(等差数列,公差为2,首项为c1=1/a1=1)有cn=1+2(n-1)=2n-1则an=1/(2n-1)bn+1=1/1-2f(Sn)化简有...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.