当前位置: > 如图,在平行四边形ABCD中,E、F分别为AD、BC的中点,AF与BE相交于点G,DF与CE相交于点H,连接EF、GH.求证;EF、GH互相平分...
题目
如图,在平行四边形ABCD中,E、F分别为AD、BC的中点,AF与BE相交于点G,DF与CE相交于点H,连接EF、GH.求证;EF、GH互相平分

提问时间:2020-10-26

答案
连接顺次连接GF、FH、HE、EG成四边形GFHE,因为HE是三角形ACD的中位线,HE平行且等于CD的一半,GH是三角形DBC的中位线,FG平行且等于CD的一半,所以 FG与HE平行且相等,可证明四边形GFHE是平行四边形,而平行四边形对角线互相平分,所以EF与GH互相平分.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.