题目
关于从A到B的满映射的个数,排列组合
集合A有元素m个,集合B有元素n个,关于从A到B的映射有n^m.
当n>=m时,单映射有几个?我想了想应该是A (n, m)
但当m>=n时,满映射有几个?我实在不知道怎么做.求大神帮忙.
集合A有元素m个,集合B有元素n个,关于从A到B的映射有n^m.
当n>=m时,单映射有几个?我想了想应该是A (n, m)
但当m>=n时,满映射有几个?我实在不知道怎么做.求大神帮忙.
提问时间:2020-10-26
答案
当m>=n时,满射的组合数.
先说结果吧,结果是:n!S(m,n)
其中,S(m,n) 是第2类Stirling数.
先介绍一下第2类Stirling数:S(m,n).
S(m,n) 是把一个有m个元素的集合,划分成n个非空子集的方法数.
用到我们这个问题中,先把定义域中m个元素划分为n个非空子集,每个子集对应值域中的一个数,这样就构成一个映射.那么,第1步划分成n个非空子集有S(m,n)种方法,第2步将每个子集对应到一个值有n!种方法.所以,一共有映射:n!S(m,n) 种.
第2类Stirling数没有显式表达式,最简单的方法就是递推.
递推公式为:
S(m,n) = S(m-1,n-1) + n S(m-1,n)
这个公式这么理
将m个元素的集合,划分成n个子集,有2种情形:
(1) 最后一个元素单独成为一个集合.这时就等价于:前 m-1 个元素划分为 n-1 个子集的方法数.于是,就是 S(m-1,n-1).
(2) 最后一个元素不单独成为一个集合,而是与其它某些元素一起组成集合.这时就等价于:前 m-1 个元素划分成 n 个子集,然后最后一个元素挑一个子集放进去.于是,就是 n S(m-1,n).
递推的初始值:
S(m,1) = 1
S(m,m) = 1
BTW:你可以放心大胆的把这个结果写给别人,不用担心别人抱怨它不是显式的结果,因为这是组合数学最基本的结论之一,任何一本组合数学的书里都是这么写的.
先说结果吧,结果是:n!S(m,n)
其中,S(m,n) 是第2类Stirling数.
先介绍一下第2类Stirling数:S(m,n).
S(m,n) 是把一个有m个元素的集合,划分成n个非空子集的方法数.
用到我们这个问题中,先把定义域中m个元素划分为n个非空子集,每个子集对应值域中的一个数,这样就构成一个映射.那么,第1步划分成n个非空子集有S(m,n)种方法,第2步将每个子集对应到一个值有n!种方法.所以,一共有映射:n!S(m,n) 种.
第2类Stirling数没有显式表达式,最简单的方法就是递推.
递推公式为:
S(m,n) = S(m-1,n-1) + n S(m-1,n)
这个公式这么理
将m个元素的集合,划分成n个子集,有2种情形:
(1) 最后一个元素单独成为一个集合.这时就等价于:前 m-1 个元素划分为 n-1 个子集的方法数.于是,就是 S(m-1,n-1).
(2) 最后一个元素不单独成为一个集合,而是与其它某些元素一起组成集合.这时就等价于:前 m-1 个元素划分成 n 个子集,然后最后一个元素挑一个子集放进去.于是,就是 n S(m-1,n).
递推的初始值:
S(m,1) = 1
S(m,m) = 1
BTW:你可以放心大胆的把这个结果写给别人,不用担心别人抱怨它不是显式的结果,因为这是组合数学最基本的结论之一,任何一本组合数学的书里都是这么写的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1且字可以加什么偏旁组成新字
- 2window的反义词是啥
- 3北冰洋的总面积是多少?
- 4fred jumps the highest in his class同义句转换
- 5若x^2+x-1=0,求x^3-2x+2010的值
- 6一个长方形放大四倍后它的长是十厘米.宽是六厘米原长方形的周长是( )厘米.面积是(
- 7篮球赛门票原来每张30元,现在降价销售后观众人数增加了一倍,收入增加了15,
- 8将下面的句子写具体,注意带点的词
- 980-X=45 80+x-80=80-45 X=45 这个方程解对了吗?有什么错误吗?
- 10如图所示,纸质圆筒以角速度ω绕竖直轴O高速转动,一颗子弹沿圆筒截面直径方向穿过圆筒,若子弹在圆筒转动不到半周的过程中在圆筒上留下了两个弹孔a、b.已知Oa和Ob间的夹角为θ<180°
热门考点
- 1描写劳动的诗歌
- 2在一条公路的两旁每隔9米栽一棵杨树(两端都要栽),一共栽了280棵,这条公路长_米.
- 3设动点M(x,y)满足sqr((x-2)^2+(y-3)^2)+sqr((x+4)^2+(y+5)^2)=k
- 4,点B,F,C,E在同一直线上,AC,DF相交于点G,AB垂直BE,垂足为B,DE垂直BE,垂足为E,且AB=DE,BF=CE.求证GF=GC
- 5有一个数除以4,乘5,减去35,加上10,结果等于100,这个数是_.
- 6《长征》中描写山的诗句是哪一句
- 7this 和it 的区别
- 8细菌的简单染色和观察实验中,有以下几个问题:
- 9五年级分数简便运算题(简单的,
- 10a向量=(2sin符号,cos符号)b向量=(1/2,3/2)则: