题目
cos(x+π)=3/5,x是第三象限的角,求(sin2x+2sin^2x)/(1+tanx)的值
急
急
提问时间:2020-10-25
答案
既然x是第三象限的角,所以x+π是第一象限的角,所以可以表示为x+π属于(2kπ,2kπ+π/2),假设一个锐角a满足cosa=3/5,则x+π可表示为2kπ+a,x=2kπ-π+a
首先求出tanx=tan2kπ-π+a=tana=4/3
sinx=sin2kπ-π+a=-sina=-4/5
2x=4kπ-2π+2a
所以sin2x=sin4kπ-2π+2a=sin2a=2sinacosa=2*4/5*3/5=24/25
所以:
(sin2x+2sin^2x)/(1+tanx)
=(24/25+2*(-4/5)^2)/(1+4/3)
=24/25
首先求出tanx=tan2kπ-π+a=tana=4/3
sinx=sin2kπ-π+a=-sina=-4/5
2x=4kπ-2π+2a
所以sin2x=sin4kπ-2π+2a=sin2a=2sinacosa=2*4/5*3/5=24/25
所以:
(sin2x+2sin^2x)/(1+tanx)
=(24/25+2*(-4/5)^2)/(1+4/3)
=24/25
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点