当前位置: > 怎么证明抛物线y=x的平方-(k+3)x+2k-1,无论k取何值,抛物线与x轴总有两个不同的交点?...
题目
怎么证明抛物线y=x的平方-(k+3)x+2k-1,无论k取何值,抛物线与x轴总有两个不同的交点?

提问时间:2020-10-25

答案
判别式=[-(k+3)]²-4(2k-1)
=k²+6k+9-8k+4
=k²-2k+1+12
=(k-1)²+12
(k-1)²>=0
所以(k-1)²+12>0
判别式是正数
所以一定和x轴总有两个不同的交点
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.