题目
已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5.
(1)试说明方程必有两个不相等的实数根;
(2)当k为何值时,△ABC是以BC为斜边的直角三角形;
(3)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.
(1)试说明方程必有两个不相等的实数根;
(2)当k为何值时,△ABC是以BC为斜边的直角三角形;
(3)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.
提问时间:2020-10-25
答案
(1)证明:∵△=(2k+3)2-4(k2+3k+2)=1,
∴△>0,
∴无论k取何值时,方程总有两个不相等的实数根;
(2﹚当△ABC是以BC为斜边的直角三角形时,有AB2+AC2=BC2
又∵BC=5,两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根.
∴AB2+AC2=25,AB+AC=2k+3,AB•AC=k2+3k+2,
由(AB+AC)2-2AB•AC=25
∴(2k+3)2-2•(k2+3k+2)=25
∴k2+3k-10=0,(k-2)(k+5)=0,
∴k1=2或k2=-5
又∵AB+AC=2k+3>0
∴k2=-5舍去
∴k=2;
(3)∵△ABC是等腰三角形;
∴当AB=AC时,△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0
解得k不存在;
当AB=BC时,即AB=5,
∴5+AC=2k+3,5AC=k2+3k+2,
解得k=3或4,
∴AC=4或6
∴△ABC的周长为14或16.
∴△>0,
∴无论k取何值时,方程总有两个不相等的实数根;
(2﹚当△ABC是以BC为斜边的直角三角形时,有AB2+AC2=BC2
又∵BC=5,两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根.
∴AB2+AC2=25,AB+AC=2k+3,AB•AC=k2+3k+2,
由(AB+AC)2-2AB•AC=25
∴(2k+3)2-2•(k2+3k+2)=25
∴k2+3k-10=0,(k-2)(k+5)=0,
∴k1=2或k2=-5
又∵AB+AC=2k+3>0
∴k2=-5舍去
∴k=2;
(3)∵△ABC是等腰三角形;
∴当AB=AC时,△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0
解得k不存在;
当AB=BC时,即AB=5,
∴5+AC=2k+3,5AC=k2+3k+2,
解得k=3或4,
∴AC=4或6
∴△ABC的周长为14或16.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 11.河谷在成熟期,横截剖面呈槽型()
- 2已知函数f(x)=根号3sinwx+coswx(w>0),y=f(x)的图像与直线y=2的两个相邻交点的距离等于π,求递增区间
- 3运用TRIZ理论的多屏幕法对自行车进行分析,并画出其图解模型...
- 41993个0.7乘1994个0.8的积 末位数是?
- 5已知函数f(x)=x2-ax-b的两个零点是2和3,则函数g(x)=bx2-ax-1的零点是( ) A.-1和-2 B.1和2 C.−12和−13 D.12和13
- 6的字少一撇是什么字?
- 7The watch TV every day.(用yesterday变成一般过去时)
- 81升水=()立方厘米
- 9一个四位整数先四舍五入到十位,再把所得数四舍五入到百位,然后又把所得的数四舍五入到千位,这时的数为3*10的3次方,这个数的最大值和最小值是多少!
- 10老舍的《四世同堂》读后感
热门考点
- 1次北固山下的颔联的绝妙
- 2用配方法 解下列一元2次方程
- 3hey listen的全文
- 424除以54=54分之()=()分之12=()除以6=() 最后的要写小数
- 5正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与过ACE的平面的位置关系是( ) A.相交 B.平行 C.垂直 D.线在面内
- 6all you really know about college is that all of your friends are going.Do you ever stop to wonder w
- 7已知|X-1|+(Y+2)的平方=0,求(X+Y)的2007次幂的值
- 8英语翻译
- 9对f(x,y,z)求偏导数 得出的(fx,fy,fz)这个向量为什么是f(x)这个点的法向量吗?
- 10影响过滤速率的主要因素有哪些?