题目
已知向量m=(2sin(wx+π/3),1),向量n=(2coswx,-√3),函数f(x)=m×n的两条相邻对称轴间的距离为π/2(w>0)
1.求函数f(X)的单调递增区间 2.当x∈闭区间【-5π/6,π/12】时,求f(x)的值域
1.求函数f(X)的单调递增区间 2.当x∈闭区间【-5π/6,π/12】时,求f(x)的值域
提问时间:2020-10-25
答案
1
f(x)=m·n=(2sin(wx+π/3),1)·(2cos(wx),-√3)
=4sin(wx+π/3)cos(wx)-√3
=4(sin(wx)/2+√3cos(wx)/2)cos(wx)-√3
=sin(2wx)+√3(1+cos(2wx))-√3
=sin(2wx)+√3cos(2wx)
=2sin(2wx+π/3)
相邻对称轴距离为π/2,即:最小正周期:T=π
即:2π/(2w)=π,即:w=1
即:f(x)=2sin(2x+π/3)
增区间:2x+π/3∈[2kπ-π/2,2kπ+π/2]
即:x∈[kπ-5π/12,kπ+π/12],k∈Z
2
x∈[-5π/6,π/12],2x+π/3∈[-4π/3,π/2]
sin(2x+π/3)∈[-1,1],即:2sin(2x+π/3)∈[-2,2]
即:f(x)∈[-2,2]
f(x)=m·n=(2sin(wx+π/3),1)·(2cos(wx),-√3)
=4sin(wx+π/3)cos(wx)-√3
=4(sin(wx)/2+√3cos(wx)/2)cos(wx)-√3
=sin(2wx)+√3(1+cos(2wx))-√3
=sin(2wx)+√3cos(2wx)
=2sin(2wx+π/3)
相邻对称轴距离为π/2,即:最小正周期:T=π
即:2π/(2w)=π,即:w=1
即:f(x)=2sin(2x+π/3)
增区间:2x+π/3∈[2kπ-π/2,2kπ+π/2]
即:x∈[kπ-5π/12,kπ+π/12],k∈Z
2
x∈[-5π/6,π/12],2x+π/3∈[-4π/3,π/2]
sin(2x+π/3)∈[-1,1],即:2sin(2x+π/3)∈[-2,2]
即:f(x)∈[-2,2]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1解方程:280/X-800/(120+X)=2
- 2函数f(x)=x²-2x-3,若存在f(x0)
- 3求政治必修二[唯物论 辩证法 认识论 历史唯物主义]所有原理~
- 4we received on Nov. 11,2005,with thanks your check No.006869 from RMB 36,000 in payment of our com
- 5杨利伟的主要事迹
- 6一只盛满水的水桶重15千克,把水倒出三分之二后,重6千克,这只水桶可以装水多少千克拜托各位大神
- 7一块石璧外直径18厘米内直径7厘米这块石壁的面积是多少
- 8英语用来比较的句型.
- 9世界上石油分布最多的地区在哪?
- 10公式 P=Fv是什么