当前位置: > 如图①,△ABC≌△DEF,将△ABC和△DEF的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O. (1)当△DEF旋转至如图②位置,点B(E)、C、D在同一直线上时,∠...
题目
如图①,△ABC≌△DEF,将△ABC和△DEF的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.

(1)当△DEF旋转至如图②位置,点B(E)、C、D在同一直线上时,∠AFD与∠DCA的数量关系是______.
(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.
(3)在图③中,连接BO、AD,猜想BO与AD之间有怎样的位置关系?画出图形,写出结论,无需证明.

提问时间:2020-10-25

答案
(1)∵△ABC≌△DEF,
∴∠A=∠D,
又∵∠AOD=∠A+∠AFD,∠AOD=∠D+∠DCA,
∴∠AFD=∠DCA;
(2)∠AFD=∠DCA.
理由如下:∵△ABC≌△DEF,
∴AB=DE,BC=EF,∠ABC=∠DEF,∠BAC=∠EDF,
∴∠ABC-∠FBC=∠DEF-∠FBC,
即∠ABF=∠DEC,
在△ABF与△DEC中,
AB=DE
∠ABF=∠DEC
BF=EC

∴△ABF≌△DEC(SAS),
∴∠BAF=∠EDC,
∴∠BAC-∠BAF=∠EDF-∠EDC,
即∠FAC=∠CDF,
又∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,
∴∠AFD=∠DCA;
(3)如图,可以证明AO=DO,
根据到线段两端点距离相等的点在线段的垂直平分线上可得直线BO是线段AD的垂直平分线,
∴BO⊥AD.
(1)根据全等三角形对应角相等可得∠A=∠D,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AOD=∠A+∠AFD,∠AOD=∠D+∠DCA,然后整理即可得解;
(2)根据全等三角形对应边相等可得AB=DE,BC=EF,根据全等三角形对应角相等可得∠ABC=∠DEF,∠BAC=∠EDF,然后推出∠ABF=∠DEC,利用边角边证明△ABF与△DEC全等,根据全等三角形对应角相等可得∠BAF=∠EDC,再推出∠FAC=∠CDF,然后利用三角形的外角性质列式即可得证;
(3)可以证明AO=DO,根据到线段两端点距离的点在线段垂直平分线得到BO⊥AD.

全等三角形的判定与性质.

本题主要考查了全等三角形的判定与性质,利用旋转变换只改变图形的位置,不改变图形的形状与大小,找出两三角形全等的条件是解题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.