当前位置: > 点P是△ABC中位线MN上任意一点,BP,CP的延长线分别交对边AC,AB于点D,E.求证:AD:DC+AE:EB=1...
题目
点P是△ABC中位线MN上任意一点,BP,CP的延长线分别交对边AC,AB于点D,E.求证:AD:DC+AE:EB=1

提问时间:2020-10-25

答案
延长AP交BC于F,再过F作FG∥CE交AB于G、作FH∥BD交AC于H.
∵MN是△ABC中过AB、AC的中位线,∴MN∥BC,∴MP∥BF,∴AP=PF.
∵FG∥CE、AP=PF,∴AE=EG. ∵FH∥BD、AP=PF,∴AD=DH.
由FG∥CE,得:EG/EB=CF/BC,∴AE/EB=CF/BC.
由FH∥BD,得:DH/DC=BF/BC,∴AD/DC=BF/BC.
由AE/EB=CF/BC、AD/DC=BF/BC,得:AE/EB+AD/DC=(CF+BF)/BC=1.
即:AE∶EB+AD∶DC=1.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.