当前位置: > 用数学归纳法求证:a^(n+1)+(a+1)^(2n-1)能被a^2+a+1整除,n属于正整数...
题目
用数学归纳法求证:a^(n+1)+(a+1)^(2n-1)能被a^2+a+1整除,n属于正整数

提问时间:2020-10-25

答案
n=1时a^2+(a+1) 满足
n=k时满足a^(k+1) *a+(a+1)^(2k-1) * a 能被a^2+a+1整除
n=k+1时
a^(k+1+1) +(a+1)^(2k+2-1)
= a^(k+1) *a + (a+1)^(2k-1)(a+1)^2
= a^(k+1) *a +(a+1)^(2k-1) (a^2+2a+1)
=a^(k+1) *a+(a+1)^(2k-1) * a + (a+1)^(2k-1) (a^2+a+1)
显然,上式左边部分和右边部分都能被a^2+a+1整除,所以整个式子能被整除
因此得证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.