当前位置: > 高中数学解析几何求轨迹方程...
题目
高中数学解析几何求轨迹方程
已知圆的方程为(x-3)^2+(y-2)^2=1,而M为圆上动点,延长MO到P,使|MO|·|OP|=6,求点P的轨迹.

提问时间:2020-10-25

答案
圆(x-3)^2+(y-2)^2=1的半径为1,圆心(3,2)到原点O的距离为√13
从原点O到圆作切线,由勾股定理,切线长的平方为13-1=12
设OQ与圆的另一个交点为E,根据切线长定理,|OQ|*|OE|=12
而│OQ│·│OP│=6,所以|OE|=2|OP|,即P为OE中点
设P点坐标为(x,y),则E点坐标为(2x,2y),E是圆上一点
所以P点坐标(x,y)满足:(2x-3)^2+(2y-2)^2=1,此即为P点轨迹方程
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.