当前位置: > 当x趋向于0,(ln((1+x)^(1/x))-1)/x 求极限...
题目
当x趋向于0,(ln((1+x)^(1/x))-1)/x 求极限

提问时间:2020-10-25

答案
先设y=(1+x)^(1/x).对原极限用罗比达法则:
lim(ln((1+x)^(1/x))-1)/x=lim(y'/y) 分母y的极限是e,下面看分子.
因为y=(1+x)^(1/x),lny=ln(x+1)/x
求导得:y'/y=(x/(x+1)-ln(x+1))/x^2=(x-(x+1)ln(x+1))/(x^2(1+x))
limy'=limylim(x-(x+1)ln(x+1))/(x^2(1+x))
=elim(1-ln(x+1)-1)/(2x(1+x)+x^2)
=-elim(ln(x+1)^(1/x))/(2(1+x)+x)
=-e/2
所以:lim(ln((1+x)^(1/x))-1)/x=lim(y'/y) =-1/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.