当前位置: > 三角形ABC中,角C=30度,求(sinA)^2+(sinB)^2-2sinAsinBcosC的值...
题目
三角形ABC中,角C=30度,求(sinA)^2+(sinB)^2-2sinAsinBcosC的值

提问时间:2020-10-24

答案
(sinA)^2+(sinB)^2-2sinAsinBcosC
= [sin(B+30°)]^2+(sinB)^2-2sin(B+30°)sinBcos30°
= 3/4(sinB)^2+√3/2sinBcosB+1/4(cosB)^2+(sinB)^2-3/2(sinB)^2-√3/2sinBcosB
= 1/4
(注:sinA=sin(180°-B-C)=sin(B+C)=sin(B+30°)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.